Peripheral and central p38 MAPK mediates capsaicin-induced hyperalgesia.

نویسندگان

  • S M Sweitzer
  • M C Peters
  • J Y Ma
  • I Kerr
  • R Mangadu
  • S Chakravarty
  • S Dugar
  • S Medicherla
  • A A Protter
  • D C Yeomans
چکیده

The stress-activated mitogen-activated protein kinase (MAPK) p38 is emerging as an important mediator of pain. The present study examined the possible involvement of peripheral and spinal p38 MAPK in capsaicin-induced thermal hyperalgesia. Topical capsaicin produced phosphorylation of p38 MAPK in the skin from the affected hindpaw as well as the corresponding lumbar spinal cord in a time dependent manner. Topical capsaicin produced robust C-fiber mediated thermal hyperalgesia that was inhibited by systemic, local peripheral, or central intrathecal pre-treatment with the p38 MAPK inhibitor, SD-282. Intraperitoneal SD-282 (10-60 mg/kg) significantly and dose-dependently attenuated capsaicin-induced C-fiber mediated thermal hyperalgesia. Similarly, 0.1-5mg/kg subcutaneous SD-282 in the hindpaw dose-dependently attenuated capsaicin-induced thermal hyperalgesia. Intrathecal administration of 1microg SD-282 was also anti-hyperalgesic in this model. Functionally, SD-282 decreased capsaicin-induced release of calcitonin gene related peptide in an in vitro skin release assay, consistent with a role for p38 MAPK in peripheral nerve function. These results suggest that p38 MAPK plays a role in the development of hyperalgesic states, exerting effects both centrally in the spinal cord and peripherally in sensory C fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ubiquitin ligase MYCBP2 regulates transient receptor potential vanilloid receptor 1 (TRPV1) internalization through inhibition of p38 MAPK signaling.

The E3 ubiquitin ligase MYCBP2 negatively regulates neuronal growth, synaptogenesis, and synaptic strength. More recently it was shown that MYCBP2 is also involved in receptor and ion channel internalization. We found that mice with a MYCBP2-deficiency in peripheral sensory neurons show prolonged thermal hyperalgesia. Loss of MYCBP2 constitutively activated p38 MAPK and increased expression of ...

متن کامل

Direct role of streptozotocin in inducing thermal hyperalgesia by enhanced expression of transient receptor potential vanilloid 1 in sensory neurons.

Streptozotocin (STZ) is a diabetogenic agent extensively used to induce diabetes and to study complications including diabetic peripheral neuropathy (DPN). While studying the influence of transient receptor potential vanilloid 1 (TRPV1) on DPN in the STZ-induced diabetic mouse model, we found that a proportion of STZ-treated mice was nondiabetic but still exhibited hyperalgesia. To understand t...

متن کامل

Cdk5 contributes to inflammation-induced thermal hyperalgesia mediated by the p38 MAPK pathway in microglia

BACKGROUND The mechanisms underlying cyclin-dependent kinase 5 (Cdk5)-mediated thermal hyperalgesia induced by inflammation remain poorly understood. In the present study, we examined thermal hyperalgesia provoked by peripheral injection of complete Freund׳s adjuvant (CFA) to test for Cdk5 signaling in the spinal dorsal horns of rats through the p38 mitogen-activated protein kinase (p38 MAPK) s...

متن کامل

p38 MAPK Activation by NGF in Primary Sensory Neurons after Inflammation Increases TRPV1 Levels and Maintains Heat Hyperalgesia

Peripheral inflammation induces p38 MAPK activation in the soma of C fiber nociceptors in the dorsal root ganglion (DRG) after 24 hr. Inflammation also increases protein, but not mRNA levels, of the heat-gated ion channel TRPV1 (VR1) in these cells, which is then transported to peripheral but not central C fiber terminals. Inhibiting p38 activation in the DRG reduces the increase in TRPV1 in th...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pain

دوره 111 3  شماره 

صفحات  -

تاریخ انتشار 2004